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SPECTRAL ESTIMATES OF BAND-LIMITED SIGNALS

1. INTRODUCTION

A central problem in the theory of stationary time series is to estimate the spectrum of
a stationary process N(t) when the given data consist of samples of s(t) = f(t) + N(t), where
f(t) is a deterministic trend of known functional form. In this paper we shall consider the
dual problem: the functional form of f(t) is unknown, the second-order statistics of N(t) are
known, and the problem is to estimate the spectrum of f(t). The signals f(t) will be assumed
to be band-limited functions having continuous Fourier transforms f(v) which vanish for
Ivj > W. Such signals are pulse-like, and the amount of useful information contained in an
observation time window depends as much on the position of the window as it does on its
length. Accurate spectral estimation requires that the observation time window capture a
significant portion of the signal energy.

We shall find that when the data are sampled at the Nyquist rate 2W, consistent spec-
tral estimators do not exist, in the sense that infinitely accurate estimates cannot be
obtained from infinitely long data records. For signals with effective time duration Te and
signal-to-noise power ratio (S/N), most of the useful information is contained in a time
window of length NC/(2W), where N, = (1/rv (2WTe)3 (S/N). For any linear spectral
estimator there exist signals whose corresponding spectral estimates have relative mean
square errors on the order of 1/N, and absolute mean square errors which are almost as
large as the largest produced by the conventional transform with Nc data points.

If the data are sampled at a rate higher than 2W, longer time windows can be effec-
tively used, and the conventional Fourier transform provides a consistent spectral estimator
as the data rate increases without bound. If, however, the time window is fixed, consistent
linear spectral estimators do not exist. Hence, to summarize, consistent linear spectral
estimators exist only if both the data rate and the length of the time window increase
without bound.

The problem of spectral estimation is essentially different from the problem of spectral
peak detection and location, and hence our pessimistic results concerning the former do not
preclude the possibility of high-resolution (supergain) spectral peak detectors, such as have
been recently proposed for band-limited signals [1,2,3,4]. However, improved resolution
necessarily results in a decrease in accuracy and detectability, and we hope to discuss this
matter in subsequent papers.

Manuscript submitted April 16, 1979.
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2. DEFINITIONS

2.1 The Class H(W)

Let H(W) be the class of complex-valued band-limited functions f = f(t) whose Fourier
transforms f = f(v) are continuous, vanish for jPj> W, and have L2 derivatives defined almost
everywhere. Then

+W

(t) = fj(v)exp[27rivt]dv, (1)

-W

+00

[(vP) = J f(t)exp[- 27rivt] dt. (2)
-00

The functions f of class H(W) are pulse-like in the sense that If(t)l - 0 as Itl -- o (a conse-
quence of the Riemann-Lebesque Lemma), and hence this class does not contain the
sinusoidal functions whose spectra are delta functions (line spectra).

We follow the standard terminology of radar and communications theory [5,6] in
defining the signal energy E = E(f), mean time T= r(f), and effective time duration
Te = Te(f) by

+00 +W

E = J If(t)12 dt= J If(p)12 dv, (3)
-w

+00

t= (1E) ft If(t) 12dt, (4)
-00

+00

T2= (47r2 /E) J(t-T)2!f(t)l2dt. (5)
_00

We define a moment M2 = M2 (fl by

M = 47r2 Jt2jf(t)j2dt= J I'f(V)1 2 dv, (6)

-00 -w
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and we have the fundamental inequalities

If(t)1 2 WM2 (f) sin2(27rWt) 
If~t~l <27r2 t2 1-(21rWt)2X

If~v~ 2 )WM 2 (f). (8)

These two inequalities will be proved in Section 5.3, and they will be 'shown to be the
sharpest possible on H(W). The time-bandwidth product 2 WTe will appear frequently
in our subsequent discussion, and we have the following "uncertainty relation":

2W Te > r, (9)

which can be shown to be the sharpest possible inequality of this type for H(W).

Remark (1). In radar and communications theory, one has the uncertainty relation
[6, p. 474]

BeTi > 7r,

where the effective bandwidth Be is defined by

B2 = (47r2 /E) f(v_ v)2 If(v)l2dv,

with

v = (1/E) f v If (v)12 dv.

Using elementary inequalities one can easily show that on H( W)

|~I l W, Be<2irW.

2.2 The Error Functions Q2, R2 (f), and R2.

When the data are unperturbed by noise, f(v) will be estimated by discrete transforms
of the type

f*(V)= X sn f(t ),

and we shall derive inequalities of the type

* If~~~1v) - f*(vl M2()( t, A,(1 1)
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GORDON

where Q2 = Q2 (v, t, d@) is a certain explicit function of the frequency v, the sample
point set t = {1t, t2 ,..., tNI, and the weights , =O{N), 2,B.--jN}. These inequalities are
sharp in the sense that for every given set of values for v, t, g, there exists a function
[in H(W) for which the inequality (11) becomes an equality. Hence the function Q2

can be interpreted as the largest possible squared error in f *(v) (when noise is absent)
normalized by the moment M2 .

Suppose now that the data are perturbed by additive white noise N(t) with zero mean.
The data consist of samples of s(t) = f(t) + N(t), and the problem is to estimate f(v) by sums
of the type 2 , s(t,). This estimate has mean and bias equal to f*(v) and [f(v) - f*(v)],
respectively, where f[* has the same meaning as before. The variance is independent of f and
is given by

VarianceB3s(t )t = a2Xi, 1l2, (12)

where a2 = e [iN(t) 12]. For any f in H(W), the mean square error in the spectral estimate
I 3,n s(t') is given by R2 (f) = (bias)2 + variance, or

R 2 (f) = If(v)- ^*(V) 12 + a2 y IP3I2 (13)

We define Ro2 = sup(R 2(fl), where the supremum is taken over the set of all f in H(W)
having a given value of M2. Then from the sharpness of the inequality (11), we have

R =M 2 Q2 (v,j )+ua2Zjp 2, (14)

and for every e > O there exist f in H(W) for which R 2 (f) > Ro - e.

2.3 The Conventional and Tapered Transforms

Explicit formulas for Q2 (v, t, ) for arbitrary values of v, , and ,will be derived in
Section 5. For our present purposes we only need the result for the case when the data
are equispaced and the weights rare conventional; i.e., P, = c, where

Cn = Atexp[2irivtn] (15)

and At is the data-point spacing. We write QC for Q2 (v, 4c and Ns for the number of
sample points. When the sample point set (t,}is given by tn = n/(2W), where n varies over
a set of integers {n:-N <n •N}, then Ns= 2N+1, and it turns out that QC is independent
of v and is closely approximated by

QC2 ~ W/(7r2N,). (6

(The accuracy of this approximation increases with increasing N8, and at N8 = 3 it is within
3% of the true value.)

For given values of v and t there exists a unique set of weights g= jA(v, t) which
minimizes Q2(v, t,) , and hence might be said to be optimal in the absence of noise. These

4



NRL REPORT 8322

weights will hereafter be called the "tapered" weights because they vanish at v = ± W (a
reflection of the fact that t(± W) = 0 for all f in H(W)). The tapered weights are denoted by
the symbol 1, and for ease of notation we write Qb for Q2 (v, t, b(v,)). Formulas fort are
given in Section 5.5. Figure 1 shows Qb/Qc as a function of v/W forN 8 = 5, 11, 21. This
ratio is an even function of v/W and the curves are only plotted for v1W > 0. Note that

Qb c = 0 at v = + W but the plunge to zero is very rapid, and Qb/Qc > 0.9 over most of
the frequency range. Also, the portion of the frequency range at which Q2/Q/ 1 increases
as Ns increases.

N =5
A N,=11

1.0

N,=21

0.5 _

g/w 0 I I I I I I 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 1 _ Q2/Q2 VS V1W

Let Vc, Vb denote the variances of the spectral estimates Z Cn s(tn) and X bn s(t),
and let {t,.} be as before. Then Icj = 1/(2W), and from Eq. (12) we have

Vc = 2 NS8 (4W 2 ). (17)

The ratio Vb /Vc turns out to be an even function of vIW, and referring to Fig. 2 we note
the following:

(i) The plunge to zero at v = ± W is again very rapid, and Vb/Vc > 1 over most of the
frequency range.

(ii) The peak value of Vb /Vc decreases slowly with increasing Ns, and the peak loca-
tions converge to v = ± W as Ns - °-

(iii) In Figs. 1 and 2 there is a close but not exact correspondence between the peaks
of one curve and the dips of the other.

5



GORDON

N =11

N,=21

1.0 ~~~~~~~~~~~~~~1.0 

0.5 - ~~~~~~~~~~~~0.5-

0 ~~~~~~~~~~~~0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 2 -V b/VC vs v1W

3. SAMPLING AT THE NYQUIST RATE

3.1 Preliminaries

Throughout this section it will always be assumed that the sample point set {tn} is given
by tn = n/(2W), where the integer n varies over the set{n: -N 6 n < N). As before, N8 will
denote the number of samples ( = 2N + 1), and T will denote the length of the time window.
Hence N. 8 2WT, and the time window is [- T/2, T/2].

In particular, when we later consider the effects of expanding the time window, it is
to be understood that the time window is to be prolonged in both directions. This is
important, for this is a necessary condition for R 2 to converge to its infimum as T - 00,

where the infimum is taken over the set of all linear spectral estimates F gns(t, ). The proof
of this statement is tedious and will not be given; however, it is easy to see why it must be
true because of the pulse-like nature of the functions of class H(W).

6
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Or

3.2 The Parameter N
C r=

We now assume that noise is present and that the conventional Fourier transform is
used (03, = ca). Then from Eqs. (14) and (17) and the approximation (16) we have

2WM2 a2 N(
R2 = 2~ s (18)

0 722N 4W 2

Hence R 2 is a convex function of Ns, and its minimum value is attained at Ns= Nc, where

r8W3M2 '/2

NC= - 22 (19)

For functions f satisfying t(f) = 0, Eq. (5) yields 112 = Te E, and we have

N = (1/r) [(2WTe)3(SIN)] , (20)

where the signal-to-noise power ratio is defined by

time - averaged signal power
(S/N) = , or

average noise power

EITe
(S/N) = . (21)

a 2

The number Nc has another interesting property. When t is an integral multiple of
1/(2W), from Eq. (7) we have

If (t)12 < Wm 2
27r 2 t2

and hence any f in H(W) eventually becomes buried in noise; i.e., there exists a number To
such that

If(t)12 < 02 when Itl > To0

Recalling that the data time window is [- T/2, T/2], it is easy to verify that the condition
Ns < Nc is equivalent to the condition T/2 < To.

Although R2 becomes an increasing function of N, when Ns > Nc, we cannot assume
that the same is true for R 2 (f ) for any particular f. However, it can be shown that for any f
in H(W), R 2(f) eventually becomes an increasing function of Ns, and using some gross
estimates this can be shown to be the case when N, > N . To prove this result, we consider
the variation of the right-hand side of Eq. (13) when the value of N is increased by unity.
The first term If(v) - f*(v)12 can change by no more than its largest possible value, viz.,

7
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M2 Q2 = (2WM2)/(7r2N8 ). Also, the second term changes (exactly) by the amount
U2 /(4W2 ). Hence the net change must be positive when N, > 8W 3M2 /(7r2 .2 ) = NC.

3.3 Nonexistence of Consistent Estimators

In the last paragraph we saw that when the conventional Fourier transform is used
the error function R2 eventually becomes an increasing function of N. as N, - °°. For each
value of N. we shall now choose a set of weights ,which is "optimal" in the sense that it
minimizes the right-hand side of Eq. (14) for given values of M2 and q2. These weights will
be called "a-optimal," and when they are used, R2 becomes a monotonically decreasing
function of N,. We define

R2 = lim R2 (22)0
Nso

and from the definitions it is evident that

R2 = inf R2 (23)

where the infimum is taken over the set of all linear spectral estimates. Hence, for any
linear spectral estimate Y2 fs(tj) and for any 6 > 0 there exist functions f in H(W)
satisfying

R 2 (f)>R2 -6.

The calculation of R., will be described in Section 5.5. It turns out that

cosh2 [7rNC/2] - cosh2 [7rNCv/(2W)I

-0 WM2 (7Nc/2) sinh rNC (24)

It follows that R2 > 0, except when v = ± W. Hence, consistent spectral estimators do not
exist when the noise is white and the data are sampled at the Nyquist rate.

3.4 Conclusions

We shall now consider some consequences of Eq. (24). For notational ease we set

u = 7rNc/2, a =v/W. (25)

Then

cosh2 u - cosh2 au
00 = WM2 u sinh 2u (26

8
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Let Xc denote the value of R. when the conventional transform is used and N8 = N,. From rr
Eqs. (18) and (19) we get

r2M 2a 1h
X= [ (27)

and therefore

cosh2 u- cosh2 au
R /Xc = (7r/2) sinh 2u (28)

When v is close to ± W it is not unreasonable to compare R2 with the "trivial" estimate
f(z)-o 0. This estimate has no variance, and its mean square error X. is given by the right-
hand side of the (sharp) inequality (8). Hence,

2 cosh 2 u - cosh2 au
1 - C2 u sinh 2u (9

The right-hand side of Eq. (28) attains its largest value when a = 0, where it equals
(7r/4)tanh u, and referring to Eqs. (9) and (20) one can easily verify that tanh u n 1 when
(S/N) > 1.

The ratio R2 /Xc decreases monotonically as u increases (i.e. the conventional Fourier
transform improves as Nd increases). When v = 0.9 and N, = 1, the ratio is 0.21. This means
that for any linear spectral estimate there exist functions f in H(W) for which R2 (f) exceeds
one-fifth the largest mean-square error produced by a conventional one-point transform
(which occurs at some function different from f).

We now examine the right-hand side of Eq. (29). This ratio converges to unity as
v ± ±W, and its minimum value is attained at P = 0, where it equals (1/u) tanh u. 1/u =
2/(7rN ). We therefore draw the following conclusions:

Conclusion 1.

When the data are sampled at the Nyquist rate, every linear spectral estimator produces
mean square errors having the same order of magnitude as the largest produced by a conven-
tional Fourier transform with N, data points, except near v = + W. where the errors have the
same order of magnitude as those produced by the trivial estimate f(v)- 0.

The ratio R2 /XO can also be interpreted as a bound on the relative errors R2 (f)/If(v)12 .
For there exist f for which R2 (f) > R 2 , and for any f we have If(v) 12 < X, since X0 is the
right-hand side of Eq. (8). Hence, there are always f for which R2 (f)/j[(V)j2 exceeds R2 IX0 ,
and we are led to the following:

9



GORDON

Conclusion 2.

When the data are sampled at the Nyquist rate, every linear spectral estimator produces
relative mean square errors which are on the order of 1/NC near v = 0 and unity near v = ± W.

4. OVERSAMPLING

4.1 The Case of Variable T

In this section we consider the effects of oversampling. That is, we now suppose that
functions of class H(W) are sampled at a rate 2kW, k>1. As before, we assume that the time
window is of the form [- T/2, T/2], so that the window is prolonged in both directions when
T is increased. We also assume that the noise remains white, which is usually the case for
receiver and thermal noise.

The results of Section 3 are based on certain closed-form expressions for Qb and Ro.
which are derived in Section 5 for the case of sampling at the Nyquist rate. These deriva-
tions require the closed-form inversion of certain matrices, which, unfortunately, we have
been unable to effect for the case of oversampling. Hence we are presently unable to give a
quantitative description of how much useful information is contained in a fixed time window
when the data rate is increased without bound. However, it can be shown that consistent
spectral estimators exist only if both the data rate 2kW and the length T of the time window
are allowed to increase without bound. Results of this type are apparently known, and our
discussion will be brief. (Cf. the discussion in Section B.1 of Blackman and Tukey [7] which
suggests the existence of results of this nature.)

The class H(W) can be considered as a subset of H(kW), and error bounds can be
obtained by replacing each occurrence of W with kW in the formulas of Section 3. The
error bounds thus obtained are sharp for the class H(kW), but are not sharp for the class
H(W), and we shall refer to this method as the "inexact" method.

Recall that the error function R2 of the conventional transform attains its minimum
value Xc when Ns = Nc, or equivalently, when T = N, /(2W). One effect of increasing the
data rate is to increase the value of N, and hence permit the use of longer data records. For
by applying the inexact method to Eq. (19), we see that Nc increases by a factor of k3/2

when W is replaced with kW. Moreover, from Eq. (27), Xc decreases by the factor 1/A/ .
Hence, conventional transform provides a consistent spectral estimator if the length of the
time window is increased by a factor of V/-when the sampled rate is increased to 2k W
and k- e.

4.2 The Case of Fixed T

We shall now suppose that T is fixed, and show that consistent spectral estimators
do not exist when k -÷ . The proof uses Shannon's Sampling Theorem, according to

10
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which every band-limited function f whose Fourier transform is of class L2 has the
representation

+00

-~~~ sin [7r(n-2Wt)] (30)
f(t) = [in [7r(n-2Wt)]

nf- 00

where we set fn = f[n/(2W)]. The bi-infinite sequence(fnd belongs to the class 12; i.e.,

E Ifn I2 <0.
-00

For each k > 1 the data s(t) = n(t) + N(t) are sampled in the window [- T/2, T/2] at
the points t = n/(2kW), where the integers n are bounded by

In I < Nk = integral part of (kWT).

Let,(k) = (g3k)),( -Nk < n < Nk) be a weight vector which produces the spectral estimate
I glnk)s [n/(2kW)] . We shall suppose that the4(k) can be chosen to make the mean square
error converge to zero as k -*00, and derive a contradiction. Setting t = n/(2kW) in Eq. (30)
we get the formal result

Nk Nk Nk

[k)S W1 = Z gxk)f [ m 1 + z I(k m) [;W]. (31)
L m 2kW J m 2kW J m ~W] 31

m=-N mn'Nk -Nk

Using Eq. (30), the first sum of the right-hand side can be expressed as an infinite series
involving the functional values fn = f[n/(2W)], and this series can easily be shown to
converge if the weight vectors $(k) are chosen to make the mean error converge to zero
as k - 0o. The second sum can be expressed as a finite linear combination of the values
N(k)[t/(2W)I, where the noise process N(k)(t) = N(t/k) is assumed to be white. Hence every
estimator of type (31) is a linear combination of functional values of f and white noise
spaced at At = 1/(2W), and therefore, from the results of the previous section, cannot be
consistent.

5. MATHEMATICAL DERIVATIONS

5.1 General Theory

We first consider the noise-free case, and describe the mathematical tools used in the
calculation of the error function Q2. Referring to Eq. (10) for notation, it is now convenient
to define the function Q2 = Q2(V, , by

Q2 sup,'I/(")_*(V) I (32)f lIfj 2 )

11
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where I- II is a norm defined on a Hilbert function space H, and the supremum is taken
over all f belonging to H. Hence

1AP) - f*(v)I2 • 11f112 Q2 ( ,t, ), (33)

and from Hilbert space generalities this inequality is sharp. We shall subsequently take
H = H(W) and 11f 12 = M2 (f), so that the sharpness of Eq. (33) implies that Eq. (11) is
sharp, but we shall first discuss the theory in more general terms.

In order for the right-hand side of Eq. (32) to be finite, it is necessary that the norm
11-11 satisfy the following two conditions:

Condition 1. For each t, the evaluation map f + f(t) is continuous with respect to 1-,
and

Condition 2. For each v, the map f e f(v) is continuous.

Hilbert function spaces H satisfying Condition 1 are called reproducing kernel Hilbert
spaces [8], and for such spaces the Riesz Representation Theorem guarantees the existence
of functions Kt = Kt(s) satisfying

f(t) = (f, Kt), for all f in H, (34)

where (*) denotes the inner product corresponding to the norm 11 11. The Hermitian
matrix

Kt(s) = (Kt, K8) (35)

is called the reproducing kernel. Similarly, when Condition 2 is satisfied there exist
functions ev = ev(t) in H defined by

f(V) = (f, e). (36)

We can now write Eq. (32) in the form

Q2 sup I(f,_eV- 123Kt )12 l

f I Ifl12J

and from Schwarz's inequality it follows that

Q= lev - fo3nKt 112. (37)

Letting <y,> denote the standard inner product on CN and expanding Eq. (37), we get

Q2 = < K;, ,> - < ,g, J'> - <J I, > + I le, 112, (38)

12
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where the matrix K = K(t) and the vector J = J (v, t) are defined by

Knm =(Kt I Kt )Kt (tn), (39a)
m n m

Jn = (e., Kt )=ev(tn)* ( 39b)
n

Equations (38) and (39) are the basic equations of this theory, and from them we see
that the error function Q2 is a nonhomogeneous polynomial in ,. With a little calculus it is
easy to show that the "optimum" value of Thwhich minimizes Q2 is given by g= b, where
b = b (v, t) is given by

t= K_1J' (40)

The corresponding minimum value of Q2 is denoted by Q2, and substituting Eq. (40) into
Eq. (38) we get

b = IlevI2 - < K-' J, J > = IIev2 <b,J>. (41)

When H = H(W) the weight vectors b are the tapered weights discussed in Section 2.
We shall later see that a-optimal weights used in calculation of R2 are obtained by inverting
the matrix K + (a2/M2 )I.

5.2 The Space H(W)

It is well known that the ordinary L2 norm satisfies Condition 1 on the class of band-
limited functions f having the representation (1), and for a neat account of the L2 theory
of linear operators, we refer the reader to Ref. 9. However, it is a standard exercise to show
that the L2 norm does not satisfy Condition 2, and we therefore define an inner product
(*,) and corresponding norm Ilil by

+W

(f,g) = Df(v) * Dg(v) dv, IfI 112 = (ff), (42)

where D denotes the differentiation operator. From Eq. (6) we have

11f112 = M 2 (f)- (43)

Let Co (W) denote the class of band-limited functions f = f(t) whose Fourier trans-
forms f = f(v) are of class CO and vanish for IvI> W. It is now convenient to define H(W) as
the completion of CO( W) with respect to the norm 1l . For smooth functions f = f(v) we
have

v1

i(Vj) - [(Vo) = I D[(v) dv;
V0

13
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hence, from Schwarz's inequality we have

VI

If v() - [(vo)l 2 IV Iv vol f IDf(v)1 2 dv,

go

and therefore

[f(vi) - f(vo)l•( I VI 11 f I.

From this inequality it is easily shown that the norm II satisfies Conditions 1 and 2, and
that the transforms f of functions f in H(W) are absolutely continuous and vanish at the end
points v = ± W. The transforms [ need not be differentiable at every point, and if the trans-
forms f, g which appear in Eq. (42) are piecewise smooth, then one can evaluate the integral
by integrating on each piece and taking the sum. More generally, one can replace f, g by the
appropriate Cauchy sequences in CO(W) and take the limit as n - 00.

Remark 2. Function spaces whose norms incorporate LP norms of kth order derivatives are
called Sobolev spaces, and are generally denoted by the symbols L4, W k, and Hk for the
case p = 2. They are currently much in use in differential equations and in the calculus of
variations, and we refer the reader to Refs. 10, 11, and 12 for the linear theory and to
Ref. 13 for the nonlinear theory. Condition 2 for the norm of H(W) is a particular example
of Sobolev Embedding Theorem. Sobolev space techniques have also been used by Sobolev
and his students in studies of efficient numerical quadrature (cubature) on high-dimensional
manifolds, and we refer the reader to the expository paper by Haber [14] for an account
of this subject.

5.3 Basic Formulas For H(W)

When H = H(W), the functions Q2 = Q2(V, t, ) can be computed for general v, t, ,by
means of Eqs. (38), (39), and the following identities:

1 i sin[27rW(t - s)] sin(27rWs)sin(27rWt) 1(s, t, s - t = 0), (44a)

K8(t) = 4Tr3 st(t - s) 27rW s 2 t2

Kt(t) = 27rWt -sin 2(2Wt) (ts*0), (44b)
47r3 t3 7t

1 
Ko(t) = Kt(o) 4r 3t3 jsin(27rWt) - (27,Wt)cos(27rWt) (t = 0), (44c)

Ko(0) = , (44d)
3

14
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1 27iv
eV(t) = 2 e27it - cos(27rWt) - (iv/W)sin(2 ,rWt) (t # 0), (45a)4ir2t 2

et(0) = (1/2) (W2
- v2), (45b)

11 eV 112 = (W2 - v2 )/(2W). (45c)

When the data are sampled at the Nyquist rate 2W, tn = n/(2W), and Eqs. (39) specialize to

Kmn 0, (m n, m =0, n s0),

Kmm = (2W3)/(7r2 m2), (m # 0), (46)

Km0 = (-1)m+l(2W 3)/(r 2 m2 ), (m 0 O),

K,, = (2/3)W3,

Jm = [W 2 /(7r2 m 2 )] [exp(7rimv/W) - (-1)m], (m 0 O),

' J = (1/2) (W2 - V2) (47)

11 eVI I2 = (W2 - v2 )/(2W). (48)

Remark 3. The basic inequalities (7) and (8) are direct consequences of Eqs. (44b) and
(45c). For, using the Schwarz inequality we get

If(t)12 = I(fKt)1 2 < ilf 112 IIKtII2 = 11f 112 Kt(t),

I ?(V)12 = I(f eV) 12 < Ilf 112 I1eV112.

Proofs. Integrating Eq. (34) by parts we obtain

+ W

f(t) = (fKd) = - f f(v) * D2Kt(v) dv
-W

Hence, comparing this equation with Eq. (1) we see that Kt = kt(v) is the solution to

{-D2kt(v) = exp[-27irit]; Kt (-W) = Kt(W) = O}.

15
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(The boundary conditions kt(± W) = 0 are required because Kt belongs to the class H(W),
whose transforms vanish at the endpoints v = ± W.) Hence, for t # 0 we have

| Kt(v) = 4 2t2 eI27it -cos(27rWt) + (iv/W)sin(27rWt)}

(49)
KOMv) = (1/2)(W 2 -v 2).

To obtain Eqs. (44), compute K8 (t) = (k, kt) directly from Eqs. (42) and (49).

To obtain Eqs. (45), we have

ev(t) = (ev, Kt) = (Kt, e>) = kt(v),

and we use Eq. (49). It is interesting to note that evpo(v) is piecewise smooth, with

ep (v) = [1/(2W)] {(W2 - vp) - (v - v0 )(W h(v- PO) + vo)t, (50)0~~~~~~~
where h is the Heaviside function, h(v) = sign (v).

5.4 Derivation of Formulas for Q2

Let the data-point set Itn } be given by tn = n/(2W) where n varies over the set of
Ns = (2N + 1) integers In: -N < n < NJ. The conventional weights are given by On =n
where

en = (1/2W) exp (7rinv/W), (51)

and by direct substitution into Eqs. (38), (46), (47), and (48) we get

Q2 = (W/2){(1/3) - (2/7r2 ) (1/n2). (52)
C~~~~~~~

We shall have occasion to use the identities

oo

2_ = (t-t -), 06t61, (53a)
n 6

+oo
exp 2irint ir exp 27rt/fy + exp 27r(1 - t)/y (53b)

1 + y2 n2 ly exp 27r/,y- 1

-00

16
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whose proofs consist in verifying that the left-hand sides are the Fourier series of the right-
hand sides. Setting t = 0 in Eq. (53a) we get the well known identity I(1/n 2 ) = 1/6. Hence,

00

QC2 = (W/7t2) E, (1/0),

N+1

and Eq. (16) is obtained using the -approximation

E, (1/n 2) 
N+1

00

r dx = 1 _ 2

-1 N + 1 Ns

5.5 Derivation of Formulas for R4

We shall now sketch the calculation of the a-optimal weights defined in Section 3.3.
These are the weights that minimize R2 for given values of M2 and a2, and referring to
Eq. (14) we see that the tapered weights (defined in Section 2.3) are obtained by setting
a = 0. We shall assume tn = n/(2W) where n varies over a set L of integers, and that the
integer 0 belongs to this set. (However, the set is not assumed to be symmetric about 0.)

Referring to Eqs. (14) and (38), we have

R =lM, <(K+ M2 I - + -- +R 2/ = <K+M 1)j3f3> < 3,Ji> _< J1f> + Ile 112.
2

Hence the minimum occurs when (K + (02/M 2) I) = Wand from Eq. (46) this equation
reduces to the system

02

KmO to + (Kmm + M )m = Jm' (m =A 0),
2

02

° + M) Po= + zL.on = Jo

where EL denotes summation over the nonzero integers n in L. The solution is readily
obtained by solving first for g~m and then for go. Let the quantities oX, a, A, B, C be defined
by

a = vIW,
(54)

[a2 1/2
a = L2W3M2 l = 2/(1NrC),

17



GORDON

2~~~~~~~~

A =1- a - 1 1- (-l)'cos7rna
2 7r2 L n2 (1 + a2 r2n2)

1 1 1 2 (55)
B =(-+a) 3 2 E n2 +a272n2)2

C = 1 , (-l)nsinirna

7C =L2 n2 (1 + a2 T2 n2 )

Then the a-optimal weights fare given by

g = (A - iC)/(2WB),
o ~~~~~~~~~~~~~(56)

On = cn + (-1)n(3 - _)
fl 0 ~~2W

and the corresponding minimum value of R2 is given by

0o W2 HA 2B (57)

The value of R2 is computed according to Eq. (22), and therefore each of the sums in
Eqs. (55) becomes an infinite series: L = n<o + Zn>o, Then C = 0, and each of the
infinite series in the expressions for A and B is decomposed into the sum of two infinite
series by means of the identity

1 1 a2 IT2

n2 (1 +a2ir 2 n2 ) n2 1 +a2 7T2 n2

Closed-form expressions for the resulting series are then obtained by means of Eq. (53b).

As already mentioned, expressions for the tapered weights are obtained from Eq. (56)
by setting a = 0 in Eq. (55), and the right-hand side of Eq. (57) then represents W Q-.

Finally, in the derivations we have assumed that the data-point set contains zero. When
this is not the case, K is a diagonal matrix and the derivations are even simpler. In particular,
we get

R 2 = WM A.0 2

18
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